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Similarity solutions for stratified rotating-disk flow 
By J. D. GODDARD, J. B. MELVILLEt AND K. ZHANG 

Department of Chemical Engineering, University of Southern California, 
Los Angeles, CA 90089-1211, USA 
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This work treats the vertically stratified system of two homogeneous fluid layers 
confined between horizontal infinite rotating disks which rotate steadily about a 
common vertical axis. Allowance is made for uniform injection of fluid at either disk. 
With appropriate restrictions on disk rotational speeds and injection rates a flat 
interface is possible, and the problem admits similarity solutions to the Navier-Stokes 
equations of the KBrmSn-Bodewadt-Batchelor variety. This type of flow allows for 
a uniformly accessible surface of interphase mass and heat transfer at the two-fluid 
interface, and, with that as the primary motivation, the present work provides 
exploratory numerical solutions of the above equations for both corotation and 
counter-rotation combined with injection. 

A linearized theory is given for the case of nearly rigid rotation, with explicit 
analytical results for the large-Reynolds-number boundary-layer limit. Also, we offer 
a theoretical discussion of the inviscid limit for arbitrary rotation and injection rates. 
Based on the type of Euler-cell solutions identified in previous work, we derive the 
remarkably simple formula 

W l d l  - zwzdz p1 w; COP- - pz w; cot - 
v, v, 

connecting densities p, depths d,  rotation speeds w and injection velocities V .  
Sample calculations and comparisons are given for property ratios typical of water- 

kerosene layers. In  this case, the linearized theory works exceedingly well for 
corotation with small injectional Rossby numbers V / w d .  The simple inviscid theory 
cited above shows excellent agreement with the numerical computations for Reynolds 
numbers greater than 500 and for Rossby numbers > l/x, corresponding to strong 
blowing in the inviscid regime. The larger-wavelength inviscid cell structure appears 
to provide the kind of stagnation-flow pattern essential to the application envisaged. 

1. Introduction 
Uniformly accessible surfaces, that is, surfaces having uniform mass or heat 

transfer coefficients, are especially useful for the study of various physicochemical 
processes that accompany laminar forced convection. Based on the pioneering work 
and treatise of Levich (1962), the classical KBrmBn flow (KSrman 1921) near a solid 
rotating disk has served for many years as a standard laboratory device in the study 
of chemical reaction kinetics at fluid-solid interfaces, especially in the field of 
electrochemistry. For this purpose Pollard & Newman (1980) have proposed a 
generalization of the KhmBn-Levich theory to cover the case of continuously 
stratified flows having vertical (disk-normal) property variations. 

t Now at the Naval Ocean Systems Center, Code 634B, San Diego, CA 92152-5000, USA. 
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In  a related work, with objectives and basic equations closer to those of the present 
paper, PBcheux & Boutin (1985) have considered the case of discrete stratification, 
involving two fluids confined between infinite rotating disks. As they point out, an 
apparatus based on this flow configuration has the potential for generating a 
uniformly accessible interface between immiscible fluids, an idea that provides much 
of the motivation for the present work (cf. Melville & Goddard 1985). Unfortunately, 
most of the hydrodynamic systems proposed to date, such as those considered by 
Stowe & Shaeiwitz (1981) along with their own stratified flow between rotating disks, 
involve non-uniform interfaces. One possibility is suggested by stagnation flow 
without rotation, which has already been proposed as an alternative to  the Karman 
flow by Ghim & Chang (1983) for fluid-solid interfaces. In  the case of fluid-fluid 
interfaces, the stagnation flow between opposing streams such as impinging liquid 
jets comes immediately to mind and has been analysed by Chapman & Bauer (1975) 
for two streams of the same fluid. As will become more apparent in the following 
discussion of immiscible streams having different properties, the upstream approach 
velocities cannot be prescribed independently if the interface is to  remain flat. 

I n  general, the primary requirements for a uniformly accessible surface for 
passive-scalar transport are : (a )  a surface-normal fluid velocity which depends only 
on an appropriate normal coordinate, measuring (curvilinear) distance from the 
surface, and (b)  uniform boundary conditions on the concentration or potential fields 
that govern diffusion and convection. Even when condition (a)  is satisfied i t  is not 
always easy to realize condition (b) ,  as illustrated by the work of Smith & Colton 
(1972) on the so-called Bodewadt or ‘teacup’ flow in which the disk is stationary and 
the fluid rotates uniformly far away. 

As shown by Bodewadt (1940) and later elucidated further by Batchelor (1951), 
centrifugal suction caused by the far-field rotation leads to  a flow directed inwards 
toward the disk axis and upwards away from the disk (that is, a flow having negative 
radial or r-velocity and positive vertical or z-velocity). The inward radial velocity 
leads almost inevitably to an edge effect associated with the developing concentration 
layer on any real surface of finite extent ; or else it implies a trivial concentration field, 
uniform throughout the system. 

From the preceding considerations, one concludes that for rotationally driven flows 
a KLrmtin-type or ‘ centrifugal-fan ’ (Batohelor 1951) flow pattern with radial outflow 
near the transfer surface will in practice be necessary for the elimination of edge 
effects. There remains, therefore, a challenging question not fully explored by 
PBcheux & Boutin (1985) as to how one might generate the requisite flow field. For 
disk flow without injection, this appears to require an interface that rotates more 
rapidly than the adjacent bodies of fluid. While the numerical study of Keller & Szeto 
(1980) indicates that  such a flow structure can arise near the mid-plane in the 
similarity flow of a homogeneous fluid,t we have not been able to generate such 
structures numerically in the present work. On the other hand, it will be shown 
presently that the desired flow pattern can in principle be generated a t  arbitrary 
Reynolds number by a judicious combination of rotation and fluid injection a t  the 
disks, such as might be achieved by employing porous disks. This stratagem enables 
one to counterbalance the centrifugally induced (positive) radial pressure gradients 
arising from rotation against the (negative) gradients associated with the interfacial 
stagnation flow generated by injection. 

t We are indebted to a referee for pointing this out to us. 



Similarity solutions for stratiJied rotating-disk $ow 429 

To clarify certain of the above issues, we report here on some exploratory numerical 
finite-difference solutions to the Khrman-Bodewadt-Batchelor (KBB) similarity 
form of the Naviedtokes equations. As a partial test of the numerics and a guide 
to understanding, we also develop a linear theory for nearly-rigid rotation and an 
inviscid theory for the large-Reynolds-number cell structure and multiplicity. Given 
the possibilities for application, we hope to make a case here for more detailed studies 
of some of the interesting fluid mechanics related to the large-Reynolds-number 
structure (Kuiken 1971 ; Dijkstra 1980; Zandbergen & Dijkstra 1987), multiplicity 
(Holodniok, KubiEek & HlavaEek 1977,1981 ; Lai, Rajagopal & Szeri 1984) and edge 
effects (Brady & Durlofsky 1987), which have received considerable attention with 
respect to the related problem of homogeneous fluids. 

2. Analysis 
We consider now the flow between infinite parallel planes of two immiscible, 

constant-property Newtonian fluids having respective densities, viscosities and kine- 
matic viscosities denoted by pl,pl, v1 and pz,p2, u,. Fluid 1 occupies the region 
0 < z < d ,  and fluid 2 the region - d ,  < z < 0, with 

d = d,+d, (2.1) 

denoting the plate spacing. The upper and lower boundaries at z = d,, -d ,  are 
imagined to consist of porous solid plates, at  which there may exist non-zero normal 
velocities together with zero tangential slip of the fluids. Furthermore, the bounding 
plates are assumed to execute rigid-body rotations about a common (2) axis, with 
angular velocities denoted by w1 and w,, respectively. 

We are concerned here with steady and axisymmetric (KBB) similarity solutions 
to the Navier-Stokes equations, of the type discussed by many previous investigators, 
in which the normal velocity component w depends only on z (Batchelor 1951). We 
adopt the dimensionless forms of Lance & Rogers (1962) with, now, two sets of 
equations of the form 

u = rwF([), v = rwG([), w = (vw)iH([)\ 

and p = pvwP([) +pwaGy,  1 
where F, G and H satisfy 

I F" = HHF'+R(F-@+C), 

Gn = &HG' + BRFG, 

H = -2RfF, 

together an equation for P(5) in terms of H and F. Here 

2 wd2 
d V 

[=-, R = -  

denote a dimensionless vertical coordinate and a Reynolds number based on some 
characteristic angular velocity or frequency w.  In  fluid i the quantities p, v, R and 
the constant C in (2.2) and (2.3) take on values pi, vt, Ri, C, respectively, for i = 1,2. 
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The boundary conditions at  the upper and lower plates are, then, 

1 -  , H = H l = y l @ ,  atE=E => 0 F = 0 ,  G = y = ’  
w 

w 
w 

(2.5) d 
d F = O  G = y = 2  ,- , H = H 2 = y 2 @ ,  atE=E 2 -  =-:, =-A. 1 and 

In addition, the matching of velocity and stress on the stationary flat interface 
requires the continuity of pC, F,  G, ( v ) iH ,  p F  and pc’, with H = 0, at  = 0. We note 
that, with the scaling implied in (2.2) and (2.5), the parameters ql and q-z represent 
in effect Rossby numbers since they have the form V / w d .  By expressing the boundary 
values of H in terms of 7 we have anticipated the fact that the Rossby number must 
be taken as O( 1) or larger if injection is to play a significant role for large Reynolds 
number. 

We further note that the contributions to pressure arising from gravity and 
interfacial tension are not operative as long as the interface is presumed flat, a 
condition that requires the interfacial matching of radial pressure gradients and, 
hence, of the quantity pC. As discussed above, the requirement of a flat interface 
appears necessary to the attainment of similarity solutions with uniformly accessible 
interface, at  least for finite values of d. The parameter w in (2.4) is free and, for the 
sake of discussion here and for the numerical analysis below, we shall specify it here 
as follows : 

(a) for non-zero rotation (0, =I= 0), 

0 = w,, y2 = 1 (2.6) 

or ( b )  for zero rotation (wl = w2 = 0), 

where V, is the injection velocity a t  6 = 6,. 
Given the order of the system of differential equations (2.3), the number of 

subsidiary conditions implied by (2.5)-(2.7) and the above internal matching 
conditions at ( = 0, we conclude that four of the five quantities El = 1 + f 1 2 ,  yl, y,, yl 
and yz in (2.5)-(2.6) can be considered free parameters, once the fluid properties and 
disk spacing d are specified. In the present work we consider the relative fluid depths 
and, hence, to be fixed leaving three free parameters. This is to be contrasted to 
the work of PBcheux & Boutin (1985) where injection is absent (yl  = y2 = 0) and El 
is determined by fixing both disk rotations y1 and y,. In this regard, we note two 
extreme cases which are of interest here: (i) rotational flows, without injection 
(ql = y2 = 0) and (ii) stagnation flows, without rotation (yl = y, = 0) .  

In Case (i), with yz  = 1, the parameter y1 must be determined by the solution to 
the above equations. In other words, the requirement of a flat interface dictates that 
the rotational speed of one plate be dependent on that of the other. One can better 
appreciate this state of affairs by considering the limit of an unbounded flow field 
where d, and d, are infinite. In this case, the matching of the radial pressure gradients 
induced by the far-field rotations a t  z = f 00 requires that 
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As with finite d ,  we may have counter-rotation or corotation of the disks, corre- 
sponding to y1 < 0 or y, > 0, respectively. 

The unbounded flow gives rise formally of course to infinite Reynolds number R 
in (2.4), leading one to anticipate a boundary-layer structure near the interface, or 
at  other viscous interlayers (Batchelor 1951), where another coordinate becomes 
appropriate in (2.3). Early in the present study we made several unsuccessful 
attempts, for the unbounded flow with boundary conditions (2.8), to generate 
numerical solutions exhibiting a (Karmhn) centrifugal-fan structure with radial 
outflow near the interface in both fluids. Based on this exploratory numerical work 
and Batchelor’s (1951) exhaustive discussion for homogeneous fluids, we conclude 
that a Karman-type flow pattern in a viscous interlayer or interfacial region may be 
difficult to  attain for stratified fluids in Case (i) above, pure rotation. This conclusion 
does not of course rule out the appearance of such flow patterns in restricted regions 
of parameter space, as indicated by the work of Keller & Szeto (1980) for homogeneous 
fluids and as faintly evident in some of our own solutions for stratified flow presented 
below (e.g. figure 2 at  R, = 10). 

In  Case (ii) above, with w, = w2 = 0, the matching of stagnation pressure fields 
requires that r ] ,  and r ] ,  be interrelated, so that upper and lower injection velocities 
cannot be prescribed independently. Here, we anticipate the classical, unbounded 
stagnation flow in the limit d, -+ 00 and d, + 00, provided r ] ,  and r ] ,  remain finite for 
R, + 00 and R2+ 00 in (2.5). In  this case the matching of radial pressure gradients 
requires a condition of the form (2.Q where now w1 and w2 denote far-field strain 
rates associated with non-rotating stagnation flows. 

In  the general case, we can have a mixed-type flow with both injection and rotation 
at  the disks, which we believe could simulate the effects of axial impellers or porous 
disks in a real laboratory apparatus. From the point of view of attaining a uniformly 
accessible interface, the combination of injection and rotation confers an additional 
degree of freedom over the extremes of Cases (i) and (ii) cited above. 

Given the well-known complexity of either Case (i) or (ii) above, we can anticipate 
that the intermediate cases will require numerical solution methods. One notable 
exception is the case of corotating disks with nearly equal fluid densities and weak 
injection. In this case, which we consider now, we have a nearly rigid rotation of the 
type envisaged by Proudman (1956), Stewartson (1957) and Hocking (1962), whose 
linearized equations would also apply to finite container geometries and flows that 
do not have the similarity form. Since we are, however, primarily interested here in 
the latter, we can perform the linearization directly on the reduced equations (2.3). 

3. Nearly rigid rotation 
To simplify presentation of the linearized theory, we cast (2.3)-(2.5) into a simpler 

form that, is especially appropriate for large Reynolds number R. Employing the 
standard (Karman) scaled coordinate 

we adopt a complex dependent variable, 

f’(Y) = P+iG, with H = -2Re (f), 
SO that (2.3) becomes 

f”+2Re(f)f”-C-ft2 = 0, 
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where primes denote derivatives with respect to g and where Re denotes the real part 
of a complex quantity. Equations of the above type apply of course in each of our 
two fluids, with f sf&), 5, = z(w/v$, and C = C,, etc., for i = 1,2, respectively. 

It will be noted that (3.3) represents a kind of complex FalknerSkan equation 
(Schlichting 1975) and suggests a certain mathematical kinship amongst various 
similarity-type flows. For the present application, the boundary conditions (2.5) and 
the interfacial matching conditions can easily be written as conditions on f(5) at 
Cl = &@, 3, = t&ki and gl = 5, = 0 respectively. 

For the case of nearly rigid rotations, we specify the rotation o in (2.2)-(2.5) and 
(3.1), together with an associated small parameter e,  by 

As perturbation series for small e ,  we then take 

C = 1 + ae + 0(eZ), (3.7) 

qfi = / ? € + 0 ( € 2 ) ,  (3.8) 

etc., where two distinct sets of 0(1) quantities q&[i,af,p6, etc., for i = 1,2, are 
implied. The scaling adopted in (3.8) is intended to convey the understanding that 
v1 and v,, the Rossby numbers based on the disk-normal injection velocities, must 
be O ( E )  for the present theory to hold. 

With the above conventions, (3.3) gives for terms of O(e) 

(3.9) 

(3.10) 

where A and B are complex constants. 
Letting, as before subscripts i = 1,2 refer to the upper and lower fluids, respect- 

ively, two distinct expressions of the above type apply in the regions 5 = cl 2 0 and 
6 = f < 0, and application of the requisite boundary and interfacial matching 
conditions leads to the equations 

where 

Al+Bl+$a, = A,+B,+iia,, 

A1-B1 = h(A,-B,),  

(p,P2>: - 
P1 P1 

(3.1 1) 

(3.12) 

and E k  A, -k EL1 Bk f &Xk = ( - )k+l 1' 2' , 

Re {( 1 - i) [Ak(Ek- 1) -Bk(Ekl  - I)]} = -/?k 

(3.13) 

(3.14) 

where E,=exp{(l+i)tk@) fo rk=  1,2 

together with Pl(1+%4 = Pz(l+a,d, (3.15) 

which, we recall, arises from the interfacial matching of radial pressure gradients 
through the term pC. 
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The latter condition dictates of course that the density differences must be O(e) 
or, equivalently, by (3.15) and (3.4), that 

(3.16) 

The rotation ratio, w l / w z  - 1, is thus directly tied to density ratio, p1/p2 - 1,  once 
a1 and a, are known. The latter, which are (real) constants, together with the 
(complex) constants A,, B,, k = 1,2, could be determined from the (six complex or 
ten real) equations (3.11)-(3.14), if the (real) injection parameters /3k and the 
parameters Ek were specified. However, the E,  involve w1 and w,, of which one is 
unknown and connected to the other through (3.16), which of course involves the 
unknowns a1 and a,. This in effect renders the problem nonlinear. 

Although the set (3.11)-(3.14) is linear algebraic in form, we have not taken the 
trouble to work out an explicit analytical solution. The latter would doubtless be so 
complicated in form that, given the above nonlinearities, its use for computation 
would scarcely be easier than the direct numerical solution of (3.11)-(3.14) and (3.16), 
which we have chosen to employ here for general values of the Reynolds number. 

In the special case of large Reynolds numbers, where (Ell $- 1 and IE,I < 1 in (3.13) 
and (3.14), one can readily derive useful asymptotic solutions to (3.11)-(3.14) of the 
form 

(3.17) 

A ,  = Ail) E;l+ .. . , 
A ,  = A$') + A t )  E, + . . . , 

B, = By)  + Bp) E;'+. . . 

B, = Bil) E, + . . . 
and a, = a t ) +  ..., 

where the coefficients A(m),  B(m), a(m) shown explicitly are all O(1) for R+ co. In  this 
way we find from (3.11)-(3.14) and (3.16) that the leading terms in (3.17) are given 
by 

t (3.18) 

B(O) = -+ih{ 8 1 + / 3 2 + 1  }, J l + h  1 

with similar expressions for the set {-up), -BP), -A$')} obtained from those given 
here for {up), A?), BiO)}, respectively, by means of permutations A+ A-', p1 =/3,, 
which is dictated by the underlying symmetry of the problem. 

The above asymptotic solutions for the parameters {a,, A,, Bk} reveal the 
boundary-layer structure of the system for large R, wherein one has asymptotic 
solutions for (3.9) and (3.10) of the form 

4 = const e-(l+i) IC-b + iia(o), (3.19) 

= g8 = & a, respectively, 

4 ++a("), for 16- Q + co, (3.20) 

all of which corresponds to the structure envisaged by Batchelor (1951) for the case 
of homogeneous fluids. Accordingly, we have also confirmed the results (3.18)-(3.20) 

with boundary-layers near the interface p = 0 or the disks 
separated by an inviscid rotating core in which 
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by a boundary-layer analysis which includes the appropriate matching in the inviscid 
cores and at  the interface. We note that for R-tm the asymptotic velocity 
distributions are given in terms of the parameters in (3.18) 

and 
(3.21) 

in the inviscid regions. 

the appropriate numerical solutions to the full nonlinear equations in (2.3). 
In the discussion of $5, we shall compare the results of the linearized analysis with 

4. Inviscid cells and multiplicity 
By means of the transformation 

fa = &7(6,, H(Y) = W 5 )  (4.1) 

R-lg"' + 2 Re {g} g" - C - g'2 = 0, (4.2) 

of (3.1) and (3.2), one can cast (3.3) into the form 

where primes on g denote derivatives with respect to 6. For R+ 00 the inviscid (Euler) 
limit is obtained in the usual way by dropping the term in R-l. As shown by Dijkstra 
(1980), a fundamental solution to the resulting inviscid equation is, up to an 
arbitrary, additive imaginary constant, 

g(6) = ~ - l [ ( l  kiK6)rS.A e*iK(f-fO)], (4.3) 

with g'(6) =f'(LJ = F + i G  = +i[T+A e*iK(t-to)] (4.4) 

and 
2 2 

h = -- ( G) = -- [r+ A cos ~ ( 6 -  &)I, 
K K 

(4.5) 

where r= (A2+C): ,  with A2+C 2 0. (4.6) 

The parameters A, the amplitude; K = kd, the non-dimensional wavenumber; and 
K E ~ ,  the phase, are arbitrary real constants. 

The expressions (4.3)-(4.6) represent a train of inviscid, rotational Euler cells or 
eddies, consisting of a stationary simple-harmonic disturbance superimposed on a 
rigid-body rotation and translation given by T i n  (4.5). In  fact, (4.5) represents the 
solution to the relevant similarity form of the celebrated Long equation (Batchelor 
1967, p. 546; Yih 1980, p. 339): 

G" + K ~ G  = K 2 r .  

As discussed below, the associated eigenvalue problem gives rise to one type of 
inviscid multiplicity. 

The relative magnitudes of the parameters A2 and C determine the nature of the 
eddy structure (4.3). Thus, for C > 0, rotation tends to be dominant and neither h 
nor 0 vanishes, whereas for -A2 < C < 0, one has closed eddies with periodic 
stagnation points at which both h = G = 0. One extreme of this regime, C = -A2 ,  
gives a purely harmonic disturbance, whereas the other represents the neutral case 
C = 0. The latter involves critical points, at which h and F vanish simultaneously, 
and represents the type of eddy shown by Kuiken (1971) to describe the inviscid 
blow-off zone for strong injection into (K&rm&n-type) flow above a rotating porous 
disk. In terms of the normal injection velocity V and rotational speed o at the disk, 

(4.7) 
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we recall that strong injection or blowing corresponds to large values of F.“L/uv, 
equivalent to g2R % 1 in the present notation, and that the wavenumber of the 
associated inviscid eddy is 

in accordance with (4.5). 
Subject to certain inviscid compatibility conditions, any two distinct solutions of 

the type (4.3) can in principle be joined at a singular surface representing a viscous 
interlayer for (4.2) or (3.3). In  the case of a homogeneous fluid we require, for 
compatibility, the continuity of the pressure coefficient C and normal velocity 
h = w/wd, whereas at any stationary singular surface that is also a surface of 
stratification between different fluids we demand continuity of pC and the vanishing 
of h, in accordance with the remarks following (2.5). 

The above inviscid matching allows generally for the existence of a vortex sheet 
or a critical layer where g’, as given by (4.4), or g” are discontinuous, which leads 
through (4.2) to a transcendental viscous interlayer of thickness R a .  However, for 
homogeneous fluids, Dijkstra (1980) and others (see Zandbergen & Dijkstra 1987) 
have surmised from extensive numerical studies that the typical large-R structure 
consists of a chain of nearly stagnant Euler cells connected, algebraically to leading 
order, at  certain inviscid critical points by weak viscous interlayers of thickness Rf . 
We note, incidentally, that the algebraic form involved is a quadratic in E,  satisfies, 
therefore, both (4.2) and its inviscid form, and represents a long-wave limit of (4.3) 
for K+O. 

In  light of the above remarks, it  appears that the well-known multiplicity for 
rotating-disk flow can be traced to a t  least two sources, one being the non-uniqueness 
of ‘ monochromatic ’ (constant-K) Euler cells corresponding to the eigensolutions of 
(4.7), and the other arising from various ‘polychromatic’ stackings of cells having 
different wavenumber but exhibiting inviscid compatibility (Zandbergen & Dijkstra 
1987). 

In  the present work, we anticipate a similar eddy structure within the 
homogeneous-fluid layers, with a concomitant multiplicity of solution. However, 
because the stand-off distance or cell wavelength implied by (4.8) increases with V ,  
we believe that the effects of injection will tend to eliminate polychromatic 
multiplicity a t  sufficiently large values of both injectional Rossby numbers g, and 
q2. Also, we suspect that the effects of strong injection combined with stratification 
will in general give rise to a (Prandtl) interlayer with the standard R* thickness a t  
the interface E = 0. 

For the present purposes, we focus attention on the structure for R+  co and the 
inviscid matching of Euler cells at = 0. To be definite, we assume a monochromatic 
Euler cell structure in either fluid, satisfying the boundary conditions (2.5) at the disk 
and the inviscid compatibility conditions at the interface 6 = 0. For each fluid layer 
this leads by (4.5) to a relation of the form (4.8) together with the following equations 
for the corresponding constants A and C: 

(4.8) 
2w k=- 
V 

where 

is an inverse Rossby number and where two distinct sets of equations are understood, 
with subscripts i = 1,2 affixed acordingly to all the quantities appearing in (4.9). By 
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restricting the magnitude of x to in, one covers the parameter range - 1 < C/A2  < 0 
exactly twice and allows for large injection rates, where x + O .  A t  the other extreme 
represented by x = +I, one has C = 0 and a characteristic wavelength 2nk-1 exactly 
twice the given fluid-layer thickness (d , )  ; whereas the mid-point x = in corresponds 
to C = - A2 and a wavelength four times the layer thickness. We suggest here that 
the parameter ranges 0 < x < $71 and in < x < in serve roughly to identify within 
the regime of dominant injection C < 0 two subregimes, namely, a regime of very 
strong injection, where ICl 2 y2, and a regime of moderately strong injection where 
ICI < y2. Accordingly, the limit point x = in, C = 0, serves to represent a lower 
bound, 2)wJd /n ,  on the magnitude of the injection rate V ,  below which we expect to 
find one or more solution branches having a broad regime in Rossby number 7 such 
that C x 0 for sufficiently large T ~ R .  Based on the numerous previous studies, 
we expect this ' neutral ' regime to be characterized by multiple-cell structures and 
a high degree of multiplicity in a given fluid layer. 

In the regime of dominant injection, C < 0, further light can be shed on the 
question of multiplicity by means of the following considerations. In addition to 
(4.9), the matching of pC a t  6 = 0 yields a key relation 

p1 w; cot2 = p w2 cot2 - 0 2  d2 
v, 2 2  v, (4.10) 

connecting rotational speeds and injection rates. 
As one indication of multiplicity, we note that if the Rossby number for one fluid 

layer, say, VJwldl,  is chosen equal to the critical value 2 / ~ ,  corresponding to C = 0, 
then (4.10) indicates that the other, V 2 / w 2 d 2 ,  must assume the same critical value, or 
any one of the smaller values, 2/3n, 2/5n, . . . , representing multiple cells in that layer. 

As shown below, there also exist multiplicities for the case C < 0, other than those 
associated with the sense of rotation. First i t  is worth noting that for large values of 
both Rossby numbers, corresponding to strong injection into both layers, the 

(4.11) 

exactly as required by the pressure matching of opposing stagnation flows with 
prescribed normal velocities at  the disks. 

The limiting solution (4.11) suggests immediately another multiplicity for C < 0, 
arising from a related special solution to (4.10). In  particular, with the parameters 
in fluid 2 given, we can take wl+O in (4.10), to obtain 

(4.12) 

corresponding to a stagnation flow in fluid 1 with infinite cellular wavelength and 
with a pressure field that matches that in fluid 2. We note by (4.1 1) that the right-hand 
side of (4.12) serves then to define an effective stagnation-flow parameter V / d  for 
fluid 2. 

The special case (4.12) is obviously coextant with any other solutions to (4.10) for 
w1 9 0 and, to investigate the other possibilities, we note that (4.10) can be cast into 

qx = tanx, (4.13) the form 

where 
d tanX2 

P = (2) (+ x = XI 
(4.14) 
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FIQURE 1.  Rotation ratio y = y1 = wl/wa us. injectional Rossby number g = qa = -gl = V / w a d  
for pl /pa  = 0.8. Inviscid-cell solutions: Branch 0 (x = 0) is discrete set of points, 71 = gel, gcz, . . . , on 
y = 0;  -, Branch I, (x = Xl); ----, Branch I1 (x = X s ) ;  -.---, Branch I11 (x = X8). Insets 
represent inviscid velocity profiles for g = 0.5 for Branches 1-111. Computations are shown by: 0, 
R, = 500; + or x , representing different branches, R, = 5000. 

and where, as implied in (4.9), xi = w i d t / &  for i = 1,2. Thus, with p1/p2, .17,/.17,, d , /d l  
and the parameter x, specified, (4.13) provides an equation for x1 and, hence, for 

(4.15) 

Equation (4.13) for x(q), which is associated with a well-known eigenvalue problem 
for (4.7), is known to possess a countably infinite set of solutions, which we 
denumerate here as x = X,, = 0, f X,, f X,, . , . , with 2X,/n lying in the interval 
(m - 1, m) for m = 1,2, . . . , corresponding to ( - l), q < 0. This solution set represents 
monochromatic inviscid multiplicity, in which each m = 1,2,  ..., corresponds to a 
cell structure in fluid 1 having wavenumber k = 2Xm/d1 and, therefore, (m- 1) zeros 

For IqI < 1, the single-cell solution X, is lost, and for IqI < 1 one also loses the 
infinite-wavelength solution x = 0 whenever injection velocities and fluid depths are 
not compatible with (4.11). 

Some of the above points become clearer in the special case to be considered at 
length in the present work, 7, = -ql = 7 2 0, and d ,  = d ,  = 9, for which 

o f m 3  in f [  = (0,51). 

(4.16) 

in (4.14). Hence, it becomes evident that the single-cell solution is lost for Rossby 
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numbers q such that IqI < 1. Inspection of (4.14) shows that the infinite-wavelength 
stagnation flow x = 0 represents an acceptable solution only for discrete values of 
q, say qcl > qc2 > ..., for which IqI = 1 in (4.16). 

Figure 1 shows a plot of y versus q, together with the representative inviscid 
velocity profiles given by (4.4) and (4.5) for the first four solution branches 
x = 0, X,, X,, X, of (4.13) and (4.14), with a density ratio p1/p2 = 0.8. Here, the two 
corresponding, largest discrete values of 7 for y = 0 are given by qcl 0.89786 and 
qc2 0.25090. We note that the single-cell branch X, merges with the infinite 
wavelength branch x = 0 at qcl and qc2. We have not attempted to represent the 
details of the higher branches X,, X,, . . . , for small q, since these become increasingly 
complex as q + O .  In  the following section, we shall compare the inviscid results with 
numerical solutions to the full equations. 

5. Numerical computations, comparisons and conclusions 
Subject to the subsidiary conditions listed above, the differential equations (2.3) 

were treated by a finite-difference numerical scheme based on an existing computer- 
library subroutine, (‘ DVCPR ’, from International Mathematics and Statistics 
Library Inc. Reference Manual, 1982) for the solution of two-point boundary-value 
problems.? The subroutine is based on a Newton-Raphson iteration, with adjustable 
step size to handle ‘stiff’ equations of the type arising for large R in (2.3). To treat 
the latter, we have cast them into a standard first-order vector equation in d/d6, 
containing component equations of the type 

dC 
d6 - O  
_ -  

for the constant parameters. Also, to satisfy the normal-velocity condition H = 0 a t  
6 = 0, we introduce a ‘false’ variable K ,  such that 

with 

0, for6 > 0, dK 

-=[dH d6 Z’ for6 -c 0, 

d 
K = 0 ,  atE=E1=’ 

d 
d 
d K = H,,  at 6 = 6, = -3, (5.3) and 

in this way converting the interfacial condition to a two-point boundary-value 
problem. (A seven-dimensional vector space is ultimately required.) 

Where possible, we have tested our computations against those of previous work 
(Lance & Rogers 1962; Holodniok etal. 1977, 1981) for the special case of a 
homogeneous fluid with no injection, in which ‘ custom-made ’, as opposed to our 
‘off-the-shelf’ software was employed. As judged from comparisons of graphical 
velocity profiles for the case y, = - 1,  the quantitative agreement between identical 
types of solutions appears satisfactory. However, in distinction to the work of 
Holodniok et al. (1981), we did not encounter parametric singularities nor did we 
generate multiple solutions. We believe this to be due to the limited nature of our 

t Detailed numerical results as well as a listing of our computer algorithm are available on 
request from the authors. 
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exploratory numerical work. We have also carried out computations for the special 
cases 7, = 7, = 0 and y, = -7, = 1, with various combinations of R, = 1,50, 
p2/p1 = 1, 3 and p2/p1 = 0.4,1,3,  considered in the previous work of PBcheux & 
Boutin (1985) on stratified two-disk flow. By starting our computations with y, = 1 
and their graphically reported values of liquid depth El, we find y1 A - 1, as required, 
except for the larger Reynolds number R, = 50 and extreme density ratio p2/p1 = 3, 
where the computed values of y1 were so sensitive to 6, as to preclude meaningful 
comparison. While this may suggest parametric singularities, we have not explored 
the issue in depth. 

With a view towards eventual experimentation, and in order to illustrate certain 
important qualitative features, most of our numerical computations have been 
executed for fluid-property ratios typical of a water/light-oil (' kerosene ' or aviation 
jet fuel) system p1/p2 = 0.8 and pJp, = 2.5. Also, we have chosen V, = - V, 2 0 and 
d ,  = d ,  for purposes of exploratory computations. Figures 2-9 provide a graphical 
summary of some of the highlights of our computations. In the absence of experiment 
or of stability considerations, the results shown for the extremely large Reynolds 
numbers of lo4 should perhaps be regarded more a matter of computational facility 
than a reflection of physical reality. 

Since our density ratio of 0.8 is not too far removed from unity, the theory 
developed for nearly-rigid rotation turns out to work rather well for the case of 
corotating disks. This is illustrated in table 1, where we compare certain salient 
aspects of the numerical solutions to (2.3) with the linearized theory, both that 
obtained for general R, by numerical solution of the algebraic equations (3.11)-(3.15) 
and, for large R,, by the associated boundary-layer analysis. Although not shown 
here, we note that for zero injection at the disks the linearized theory gives a quite 
satisfactory description of the eddy structure. The theory also displays another 
remarkable feature of the numerical results, namely, that the fluid interface behaves 
essentially as a rigid solid. Computed values of the nominal perturbation parameter 
B of (3.4) are also shown in the table. As can be seen, the linearized theory is quite 
good even for relatively large values of B as long as the injection rate is small. In 
particular, for values of the injection velocity - H ,  2 0.01 it is evident that injection 
begins to disrupt the nearly-rigid rotation. 

We also note that, with the exception of a very weak flow in figure 2 (a), the results 
in figures 2-5 do not indicate simultaneous flow patterns of the Karman type near 
the interface, with flow directed toward the interface in both fluids. To achieve such 
a pattern it appears necessary to int,roduce injection as discussed above. 

Figures 6-8 show a rather rich eddy structure resulting from the combination of 
rotation and injection, for the special case of equal injection rates V, = - V, > 0. We 
believe this structure reflects a high-R state, consisting of multiple inviscid cells 
interspersed with viscous interlayers, of the type that has been discussed theoretically 
by Kuiken (1971), Ockenden (1972), Dijkstra (1980) and Zandbergen & Dijkstra 
(1987) and that is evident in the numerical solutions of Dijkstra (1980), Keller & Szeto 
(1980), and of Holodniok et al. (1981) for homogeneous fluids. One discerns from the 
figures that injection becomes rapidly dominant with increasing Rossby number 
V/Wd, giving rise to stagnation-type streamlines and a flow pattern that is considered 
by us to be essential for achieving a uniformly accessible interface. 

The computations shown in figure 9 indicate the effects of further increasing 
injection, until we achieve the regime of strong injection identified in $4 for inviscid 
flow. At  the Reynolds number R, = 500, represented in figure 9, the structure 
predicted from the inviscid theory of $4 is already evident, although the viscous 
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0.5 0.5 

0 0 

-0.5 -0.5 

FIQURE 2. Streamlines of corotational flow without injection (ql = q2 = 0) at various Reynolds 
numbers R,  = dPw,/v,:  (a) 10, (a) 100, (c) 1O00, (d) 10000. 

-0.05 0 0.05 0 0.1 0.3 0 0.05 0.10 -0.05 0 0.05 0 0.1. 0.3 0 0.050.10 
(4 (b) 

0 . 5 1  1 1 7  y '  i \ '  

-0.5 I ' 31 I ' 
-0.05 0 0.05 0 0.1 0.3 0 0.05 0.10 -0.05 0 0.05 0 0.1 0.3 0 0.05 0.10 

(4 (4 
FIQURE 3. Velocity profiles for figure 2. 

interlayers are still quite prominent. In order to compare this more closely with 
inviscid theory, we have carried out computations for a much larger Reynolds 
number R, = 5000. Although not shown here, the velocity profiles for 7 2 1 / ~  are 
virtually indistinguishable from the inviscid single-cell (m = 1) solutions discussed 
in $4. 
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0.5 I I I I I I  0.5 
? '  

0 

F G j  

0.5 

0 

-0.5 

1 1 8 ,  l l \ '  

1 _ _ _ _ - - _  j - -  

i H  
1 - 1  - I  1 

0.5 

0 

-0.5 

FIGURE 4. Streamlines for counter-rotational flow without injection at various R,: (a) 10, ( b )  100, 
( c )  1o00, (d) 1oOOo. 

-0.1 0 0.1 -0.5 0 1.0 -0.3 0 0.15 

FIGURE 5. Velocity profiles for figure 4. 

The corresponding computations for the speed ratio y = (yll = Iw,/wzl are shown 
in figure 1 for Rossby numbers 7 in the range of 0.1 to vCl 0.89786. Once again, 
in the inviscid strong-injection regime, qcl > 7 l /n,  the computations are virtually 
indistinguishable, both for R, = 500 and R, = 5000, from the inviscid theory for 
m = 1. As can be seen from figure 9 ( d ) ,  one approaches the infinite-wavelength state 
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(a) 

0.5 

0 

-0.5 

FIGURE 6. Streamlines for corotational flow with injection at R, = 500 and various injection 
velocities 7 = q2 = -ql  = V/'/w,d: (a) 0.056, ( b )  0.11, (c) 0.17, (d) 0.22. 

0 ------ L 

H 

-0.5 I I I I I  

0 0.25 0.5 0 0.5 1.0 -8 -4 0 4 8 
(4 

0 0.25 0.5 0 0.5 1.0 -8 -4 0 4 8 
(4 

FIQURE 7. Velocity profiles for figure 6. 

m = 0 for 7+qcl, However, for very strong blowing, at or above the terminus of the 
m = 1 inviscid branch, 7 2 tcl, we were never able to obtain convergence in our 
numerical computations. Unfortunately, our present continuation methods are not 
adequate to get us onto one of the higher branches, shown for m = 2,3 in figure 1. 

For 7 < vce A 0.25090 we were able to generate multiple solutions numerically for 

15 FLX 182 
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0 0.25 0.5-1 0 1 -4  0 4 8 
(4 (4 

FIQURE 8. Velocity profiles for counter-rotational flow with injection at R, = 500 and various 7 : 
( a )  0, ( b )  0.028, (c) 0.17, (d )  0.28. 

0.5 

I 

I I I I 
I I 
I I I 

-0.5 
0 1.0 0 1.0-1.0 0 1.0 0 1.0 0 1.0 -1.0 0 1.0 

(4 (4 
-0.5 

FIQURE 9. Velocity profiles for corotational flow at R, = 500 and various 7 : ( a )  0.20, ( b )  0.32 z l /n,  
(c) 0.5, (d )  0.85. 
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R, = 5000, as indicated in figure 1. We therefore believe that polychromatic cell 
structure and multiplicity is involved for 7 < l/x but have not explored this in 
detail. 

While not shown here, we find that a plot of the pressure coefficient C,  versus 7 
for R, 2 500 has C, x 0 for 7 < 1/n, in line with our conjecture of 94, and 

c, = -3 P cot2 (k) 
P1 

for qcl > 7 2 1/n, exactly as predicted by the inviscid theory. 
In  conclusion, our computations and the inviscid theory presented above suggest 

that injection not only serves to generate the type of flow pattern desired, but it also 
tends to reduce multiplicity and the associated complexity of the similarity-solution 
structure. It seems to  us evident that injection would also have the further benefit, 
for the applications envisaged here, of minimizing the edge effects that must be 
present with any finite disk system and which are predicted by Brady & Durlofsky 
(1987) to persist even in the limit of infinite disks for the case of no injection. 

Therefore, the above type of rotational system offers promise for generating a 
uniformly accessible fluid-fluid interface, with potentially more flexibility than 
non-rotational stagnation flow. This, together with some of the fluid-mechanical 
questions raised above, appears worthy of further investigation. 
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